--- title: "Computing plausibility functions" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Computing plausibility functions} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} bibliography: references.bib --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(dplyr) library(ggplot2) library(purrr) library(tibble) library(tidyr) library(flipr) load("../R/sysdata.rda") ``` ```{r setup, message=FALSE} ngrid_in <- 10 ngrid_out <- 100 nperms <- 100000 n1 <- 30 n2 <- 30 set.seed(1301) x1 <- rnorm(n1, mean = 0, sd = 1) x2 <- rnorm(n2, mean = 3, sd = 1) y1 <- rnorm(n1, mean = 0, sd = 1) y2 <- rnorm(n2, mean = 0, sd = 2) z1 <- rnorm(n1, mean = 0, sd = 1) z2 <- rnorm(n2, mean = 3, sd = 2) ``` The concept of plausibility functions pertains to assessing the $p$-value of a set of null hypotheses and to plot this $p$-value surface on the domain defined by the set of null hypotheses. The idea behind is that, if such a plausibility function is available, you can deduce from it point estimates or confidence interval estimates for parameters used to define the nulls or extract a single $p$-value for a specific null of interest [@martin2017; @fraser2019; @infanger2019]. In particular, there is another **R** package dedicated to plausibility functions called [**pvaluefunctions**](https://CRAN.R-project.org/package=pvaluefunctions). ## Plausibility function for the mean ```{r, eval=FALSE} null_spec <- function(y, parameters) { map(y, ~ .x - parameters) } stat_functions <- list(stat_t) stat_assignments <- list(delta = 1) pf <- PlausibilityFunction$new( null_spec = null_spec, stat_functions = stat_functions, stat_assignments = stat_assignments, x1, x2, seed = 1234 ) pf$set_nperms(nperms) pf$set_point_estimate(mean(x2) - mean(x1)) pf$set_parameter_bounds( point_estimate = pf$point_estimate, conf_level = pf$max_conf_level ) pf$set_grid( parameters = pf$parameters, npoints = ngrid_in ) pf$set_alternative("two_tail") pf$evaluate_grid( grid = pf$grid, ncores = 1 ) df <- rename(pf$grid, two_tail = pvalue) pf$set_alternative("left_tail") pf$grid$pvalue <- NULL pf$evaluate_grid( grid = pf$grid, ncores = 1 ) df <- bind_rows( df, rename(pf$grid, left_tail = pvalue) ) pf$set_alternative("right_tail") pf$grid$pvalue <- NULL pf$evaluate_grid( grid = pf$grid, ncores = 1 ) df <- bind_rows( df, rename(pf$grid, right_tail = pvalue) ) pf$set_grid( parameters = pf$parameters, npoints = ngrid_out ) df_mean <- tibble( delta = pf$grid$delta, two_tail = approx(df$delta, df$two_tail, delta)$y, left_tail = approx(df$delta, df$left_tail, delta)$y, right_tail = approx(df$delta, df$right_tail, delta)$y, ) %>% pivot_longer(-delta) ``` ```{r, fig.asp=0.8, fig.width=6, out.width="97%", dpi=300} df_mean %>% ggplot(aes(delta, value, color = name)) + geom_line() + labs( title = "P-value function for the mean", subtitle = "t-statistic", x = expression(delta), y = "p-value", color = "Type" ) + geom_hline( yintercept = 0.05, color = "black", linetype = "dashed" ) + geom_vline( xintercept = mean(x2) - mean(x1), color = "black" ) + geom_vline( xintercept = stats::t.test(x2, x1, var.equal = TRUE)$conf.int, color = "black", linetype = "dashed" ) + scale_y_continuous(breaks = seq(0, 1, by = 0.05), limits = c(0, 1)) ``` ## Plausibility function for the variance ```{r, eval=FALSE} null_spec <- function(y, parameters) { map(y, ~ .x / parameters) } stat_functions <- list(stat_f) stat_assignments <- list(rho = 1) pf <- PlausibilityFunction$new( null_spec = null_spec, stat_functions = stat_functions, stat_assignments = stat_assignments, y1, y2, seed = 1234 ) pf$set_nperms(nperms) pf$set_point_estimate(sd(y2) / sd(y1)) pf$set_parameter_bounds( point_estimate = pf$point_estimate, conf_level = pf$max_conf_level ) pf$set_grid( parameters = pf$parameters, npoints = ngrid_in ) pf$set_alternative("two_tail") pf$evaluate_grid( grid = pf$grid, ncores = 1 ) df <- rename(pf$grid, two_tail = pvalue) pf$set_alternative("left_tail") pf$grid$pvalue <- NULL pf$evaluate_grid( grid = pf$grid, ncores = 1 ) df <- bind_rows( df, rename(pf$grid, left_tail = pvalue) ) pf$set_alternative("right_tail") pf$grid$pvalue <- NULL pf$evaluate_grid( grid = pf$grid, ncores = 1 ) df <- bind_rows( df, rename(pf$grid, right_tail = pvalue) ) pf$set_grid( parameters = pf$parameters, npoints = ngrid_out ) df_sd <- tibble( rho = pf$grid$rho, two_tail = approx(df$rho, df$two_tail, rho)$y, left_tail = approx(df$rho, df$left_tail, rho)$y, right_tail = approx(df$rho, df$right_tail, rho)$y, ) %>% pivot_longer(-rho) ``` ```{r, fig.asp=0.8, fig.width=6, out.width="97%", dpi=300} df_sd %>% ggplot(aes(rho, value, color = name)) + geom_line() + labs( title = "P-value function for the standard deviation", subtitle = "F-statistic", x = expression(rho), y = "p-value", color = "Type" ) + geom_hline( yintercept = 0.05, color = "black", linetype = "dashed" ) + geom_vline( xintercept = sqrt(stats::var.test(y2, y1)$statistic), color = "black" ) + geom_vline( xintercept = sqrt(stats::var.test(y2, y1)$conf.int), color = "black", linetype = "dashed" ) + scale_y_continuous(breaks = seq(0, 1, by = 0.05), limits = c(0, 1)) ``` ## Plausibility function for both mean and variance Assume that we have two r.v. $X$ and $Y$ that differ in distribution only in their first two moments. Let $\mu_X$ and $\mu_Y$ be the means of $X$ and $Y$ respectively and $\sigma_X$ and $\sigma_Y$ be the standard deviations. We can therefore write $$ Y = \delta + \rho X. $$ In this case, we have $$ \begin{cases} \mu_Y = \delta + \rho \mu_X \\ \sigma_Y^2 = \rho^2 \sigma_X^2 \end{cases} \Longleftrightarrow \begin{cases} \delta = \mu_Y - \frac{\sigma_Y}{\sigma_X} \mu_X \\ \rho = \frac{\sigma_Y}{\sigma_X} \end{cases} $$ In the following example, we have $\delta = 3$ and $\rho = 2$. ```{r, eval=FALSE} null_spec <- function(y, parameters) { map(y, ~ (.x - parameters[1]) / parameters[2]) } stat_functions <- list(stat_t, stat_f) stat_assignments <- list(delta = 1, rho = 2) pf <- PlausibilityFunction$new( null_spec = null_spec, stat_functions = stat_functions, stat_assignments = stat_assignments, z1, z2, seed = 1234 ) pf$set_nperms(nperms) pf$set_point_estimate(c( mean(z2) - sd(z2) / sd(z1) * mean(z1), sd(z2) / sd(z1) )) pf$set_parameter_bounds( point_estimate = pf$point_estimate, conf_level = pf$max_conf_level ) # Fisher combining function pf$set_aggregator("fisher") pf$set_grid( parameters = pf$parameters, npoints = ngrid_in ) pf$evaluate_grid(grid = pf$grid, ncores = 1) grid_in <- pf$grid pf$set_grid( parameters = pf$parameters, npoints = ngrid_out ) if (requireNamespace("interp", quietly = TRUE)) { Zout <- interp::interp( x = grid_in$delta, y = grid_in$log_rho, z = grid_in$pvalue, xo = sort(unique(pf$grid$delta)), yo = sort(unique(pf$grid$log_rho)) ) pf$grid$pvalue <- as.numeric(Zout$z) } else pf$grid$pvalue <- rep(NA, nrow(pf$grid)) df_fisher <- pf$grid # Tippett combining function pf$set_aggregator("tippett") pf$set_grid( parameters = pf$parameters, npoints = ngrid_in ) pf$evaluate_grid(grid = pf$grid, ncores = 1) grid_in <- pf$grid pf$set_grid( parameters = pf$parameters, npoints = ngrid_out ) if (requireNamespace("interp", quietly = TRUE)) { Zout <- interp::interp( x = grid_in$delta, y = grid_in$log_rho, z = grid_in$pvalue, xo = sort(unique(pf$grid$delta)), yo = sort(unique(pf$grid$log_rho)) ) pf$grid$pvalue <- as.numeric(Zout$z) } else pf$grid$pvalue <- rep(NA, nrow(pf$grid)) df_tippett <- pf$grid ``` ```{r, fig.asp=0.85, fig.width=9, out.width="97%", dpi=300} df_fisher %>% ggplot(aes(delta, log_rho, z = pvalue)) + geom_contour_filled(binwidth = 0.05) + labs( title = "Contour plot of the p-value surface", subtitle = "Using Fisher's non-parametric combination", x = expression(delta), y = expression(log(rho)), fill = "p-value" ) + theme_minimal() ``` ```{r, fig.asp=0.85, fig.width=9, out.width="97%", dpi=300} df_tippett %>% ggplot(aes(delta, log_rho, z = pvalue)) + geom_contour_filled(binwidth = 0.05) + labs( title = "Contour plot of the p-value surface", subtitle = "Using Tippett's non-parametric combination", x = expression(delta), y = expression(log(rho)), fill = "p-value" ) + theme_minimal() ``` ## References